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ABSTRACT

GPS will play a central role in the provision of location 
based services using mobile cellular telephones. Many 
commercially-available handsets (terminals) already 
include integrated GPS components, mostly for use on 
CDMA and CDMA 2000 networks in which the 
transmitted signals are synchronised to GPS time. This 
synchronisation brings advantage in that it is relatively 

straightforward to provide the GPS receiver in the mobile 
terminal with assistance in the form of GPS time accurate 
to within approximately 10 s. By a somewhat complex 
route, the time aiding extends the usability of the GPS 
service into buildings and other shielded environments. 
However, on GSM and W-CDMA networks, which 
dominate globally, the provision of time aiding is more 
difficult because the network transmitters are 
asynchronous by design. There is no concept of 'network 
time', and the transmitted signals have no pre-determined 
relationship with each other or with GPS time.

Duffett-Smith et al. [1,2] have proposed and 
demonstrated a method of providing fine time aiding 
(FTA) in GSM and W-CDMA networks, called Enhanced 
GPS (E-GPS), which uses the Matrix method [3-6] of 
locating a mobile terminal from the network signals 
received by the terminal. In E-GPS, the network signals 
are used as a ‘receptacle’ for GPS time after calibration.  
In ref. [1], they reported the first measurements made on 
GSM networks showing that FTA accuracies of 1 sec or 
better were sustainable even over several hours. This 
conclusion is further supported in a companion paper to 
this one [7] which demonstrates that, in some 
circumstances, FTA at the sub 2 s level is possible over 
elapsed time periods exceeding one day.

In this paper, we examine and quantify the benefits which 
FTA brings in terms of the reduction in the complexity of 
a GPS implementation. We show how FTA combined 
with a precise knowledge of the local oscillator offset 
render it unnecessary to use massive parallel correlator 
hardware designs. On the contrary, we show that excellent 
in-building performance may be achieved using as few as 
two complex correlators per GPS satellite channel. These 
benefits come mainly from three factors:

(a) a reduction in the code phase search window by a 
factor of more than 500;
(b) frequency stabilisation of the local oscillator using the 
network signals; and



(c) the use of a stronger statistical test in the signal 
detection algorithm for a given false-alarm rate.

The changes in the statistical tests requirements in (c) 
provide an effective gain in receiver sensitivity of up to 6 
dB whatever number of correlators is used. The further 
benefits of FTA can be ‘traded off’ between cost saving 
(simpler GPS implementations), time saving (time to first 
acquisition), and sensitivity increase (penetration into in-
building environments etc.). FTA at 2 s accuracy 
provides the simplest and lowest-cost GPS receiver with 
an overall performance gain approaching 23 dB, giving it 
a performance in speed and sensitivity similar to that 
achieved using much more expensive parallel correlator 
designs.

INTRODUCTION

The principle of providing assistance to a mobile GPS 
receiver is well known and examples may be seen dating 
before 1986 (e.g. ICD GPS-150, first version). The 
assistance comes in several forms: satellite information 
(almanac and ephemeris), position information, and time 
information. We are concerned here with the provision of 
time information, in particular Fine Time Aiding (FTA) 
by which the GPS time at the terminal can be extracted 
from network signals within an accuracy of 2 s. The 
standardised method of providing this information is by 
means of a message, sent from a GPS server in the 
network to the mobile terminal, indicating that a 
particular signature in a network signal receivable in the 
near future by the terminal corresponds precisely to a 
particular GPS time. 

There are several problems with this approach. The first is 
that messages take a relatively long time to set up and 
send. Typically, the terminal sends a message to the 
server (several seconds delay) requesting the GPS time 
assistance. The server responds with the requested 
information (several more seconds), and only then can the 
GPS receiver begin its satellite acquisition phase. It will 
be appreciated that such assistance is only needed when 
the satellite signals are weak – e.g. inside buildings and 
other shielded spaces, so that a long acquisition period is 
anticipated. Several more seconds of integration may be 
required. The overall effect can therefore be to insert a 
long delay between position request and position response 
which may be too much for the application.

A second problem with this approach is that the server in 
the network does not know the precise position of the 
mobile terminal. A coarse correction may be made using 
Timing Advance (TA) information, if available, or Cell 
Identification (Cell-ID) information. In either case, there 
can be several microseconds of uncertainty in the GPS 
time provided.

A third problem is that expensive network-based GPS 
equipment is required to provide this FTA service. Few, if 
any, GSM networks can have been so equipped so far.

For these, and other, reasons, Duffett-Smith et al. [1,2] 
have proposed an alternative method of providing FTA to 
a mobile terminal. The method is based around the Matrix 
positioning system which is able to locate the mobile 
terminal using the measured relative receive time offsets 
of the signals from surrounding base stations of the 
network. The calculation provides not only terminal 
positions, but also a list of relative transmission time 
offsets of the base stations. When coupled with the 
calculated position of the handset and sufficient stability 
of the network timing signals, an initial calibration of the 
receipt of the signals from one base-station against GPS 
time can be carried around within the terminal and used, 
at a later time, to infer GPS time from the receipt of the 
signals from the same or another base station. This 
method, in effect, uses the unsynchronised, but stable, 
network signals as a remote repository of accurate GPS 
time.

Duffett-Smith and Tarlow [1] have demonstrated FTA 
accuracies of about 1 s. Pratt et al. [7] have provided 
additional support in the form of Allan standard deviation 
curves of GSM signals received by a terminal which show 
that 2 s accuracy is available over elapsed times of many 
hours or more than a day. That the calibration of the 
network signals is carried around inside the terminal 
ensures that FTA is available without delay when needed,
and this method does not require the support of a 
network-based GPS server.

GPS EQUIPMENT DESIGN TRADE-OFF

What performance and design advantages does the 
availability of FTA accurate to 2 s bring? The answer, of 
course is multi-dimensional, and depends in particular on 
what GPS receiver configuration is being considered. The 
simplest useable configuration is probably one in which 
there are just two complex correlators per satellite 
channel, bearing in mind the probable need to track a 
satellite once acquired. Such a configuration will have the 
lowest cost, lowest silicon ‘real-estate’ footprint (the 
baseband processing could also be implemented in 
software), and may have the lowest power consumption, 
but it will be practical without FTA only in strong signal 
conditions. On the other hand, configurations with 
thousands of correlators can do parallel searching over all 
possible code-phase offsets, so need not be supplied with 
FTA. However, these are expensive, power-hungry, and 
have larger silicon footprints.

With any complexity of GPS configuration, whether there 
are just two or two thousand correlators per satellite 



channel, FTA will always provide up to 6 dB of real 
sensitivity gain. This is because the satellite detection 
strategy can be made more aggressive for any given false-
alarm rate as the search window in which a cross-
correlation peak might be attributed to a satellite signal is 
much narrower. The statistical likelihood of a noise peak 
crossing a detection threshold within the window is 
therefore smaller. We quantify this below.

The other benefits of FTA include, for a given GPS 
receiver complexity, increasing the signal integration time 
and reducing the re-acquisition time. These are also 
examined below.

PERFORMANCE GAIN

One of the key attributes for understanding the 
performance gain from fine time aiding is the re-
acquisition budget. The GPS re-acquisition mode can be 
entered when a GPS location solution (or ‘fix’) has 
previously been determined with a current ephemeris, or 
at least with one which is nearly current. The definition 
can be made precise: in the context of FTA, a fix will 
have been obtained within the previous few hours. As 
explained above, the FTA information is obtained from 
previously-calibrated modulation signatures (such as 
synchronisation bursts) in the base-station signals. The 
calibration in relative time offset and time offset rate is 
used to provide future calibrated GPS time to an accuracy 
of not worse than 2 s, and can be relied upon for many 
hours even though the mobile terminal may have moved 
and changed serving base station in the intervening 
period.

The code search budget during reacquisition is given in 
Table 1.

Table 1: the code search budget for a GPS receiver in re-
acquisition mode.

The major contributor is the receiver clock uncertainty 
(i.e. the accuracy of the FTA). The location accuracy 
inferred using Matrix would only become a major 
contributor if the location accuracy degraded to 
approximately 0.5 km.

Table 1 indicates the crucial role which FTA can play in 
containing the reacquisition search envelope for the 
correct code phase. There are several other important 
side-effects including:

(a) a reduction in the search space leading to a 
significant reduction in the complexity of the GPS 
base-band processor;

(b) for a given GPS base-band complexity and fixed 
observation interval, a proportional increase in the 
coherent or incoherent signal integration time, 
improving GPS sensitivity;

(c) for given base-band complexity, a reduction in the 
re-acquisition time (observation interval); and an 
improvement in the test statistics, so that there is a 
lower probability of false alarm or higher 
probability of detection, or both.

The proportion of each one of these is a performance cost 
trade-off established when the GPS receiver design is 
frozen. We provide indicative gains for case (b) since the 
reduction in re-acquisition time or base-band complexity 
is simply proportional to the reduction in code search 
space. By inspection of Table 1, this is evidently about 
500:1 in comparison with an un-aided GPS receiver, 
performing a blind search (with an accumulated 1 ms time 
or location uncertainty). This is an appropriate response 
if no position aiding is available and the receiver has been 
moved to a new, unknown, location. Partial time or 
location aiding would reduce the improvement ratio, but it 
is usually the receiver clock which then contributes the 
largest uncertainty (with an undisciplined quartz 
oscillator). Fine time aiding solves this problem.

SENSITIVITY IMPROVEMENT

We now examine the sensitivity improvement which can 
be attached to GPS reception using fine time aiding of the 
receiver clock. In order to make valid comparisons, a 
number of receiver variables have been fixed in what 
follows. In practice, the performance gain may be taken 
in various ways and this makes comparison more 
difficult. The case studied here is somewhat artificial but 
is representative of what is possible.

The features of the GPS receiver, fixed for the 
comparison are:

1. the base-band complexity (i.e. the number of 
complex correlators available to each satellite 
channel);

2. the observation time interval (i.e. the allowed re-
acquisition time); and

3. the detection statistics (i.e. the probability of 
detection, Pd, and probability of false alarm, Pf).

code uncertainty rms 
value

unit

receiver clock error (FTA) 2.0 s
horizontal location error (Matrix) 100 m
satellite clock error < 4 ns
satellite position error < 0.1 m
HDOP 1.6

Required code search space 2.01 chips



As mentioned previously, one consequence of the 
reduction in the search window in code phase is a similar 
reduction in the overall false alarm probability, or a 
change in the detection threshold to maintain a given Pf.  
We introduce the statistical preliminaries in the next
section which permit the computation of both Pf and Pd.

STATISTICAL PRELIMINARIES

We consider the output of a complex filter matched to the 
wanted GPS signal (i.e. one which uses a replica of the 
code sequence for the chosen satellite, a replica of the 
received carrier signal, matched in frequency and phase 
within certain limits, and integrated coherently for a time, 
T ). Most of the statistical expressions can be derived 
from standard forms (see for example: ref. [8]).

PROBABILITY OF FALSE ALARM

When there is no satellite signal present, the outputs (x, y) 
of the in-phase and quadrature-phase channels of a typical 
correlation receiver, are random noise with Gaussian 
probability density functions (PDF), having means of zero 
and variances of  2 in each channel. The variance is a 
result of thermal and receiver noise, and its value is 
affected by the band-limiting action of the correlation 
receiver, the gain of the RF processor and the integration 
time. The joint PDF, P(x, y) for x and y is therefore given 
by:
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where we have assumed that x and y are statistically 
independent.

In common with many receiver designs, we take it that 
the receiver computes the test statistic z = (x2 + y2) to 
determine the presence or absence of a signal by 
comparison with a threshold. The PDF for z is computed 
by a reversible Cartesian to polar transformation 
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The distribution of z follows after integration over the 
domain:







 22 2

exp
2

1)(

zzP , with

22 2and2   zz . (3)

Attempts to improve GPS receiver sensitivity are limited 
by the duration of coherent integration because of the data 
modulation. A number of different strategies have been 

proposed but this is not the subject of this paper. For now 
we will take it that, because of FTA, the times of the data-
bit transitions are known accurately in receiver time for 
the constellation which was visible at the time of the 
original calibration (the clock bias and clock rate of each 
satellite is required). This implies that coherent 
integration for T = 20 ms is allowed, though this might 
be lengthened with some clever algorithms. In order to 
improve sensitivity, incoherent integration for a number, 
N, of T intervals is used with a test statistic, u, which is 
the accumulated sum of the energy from each coherent 
integration, zi, weighted by the variance, i, of each 
contribution:  


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i i

izu
1 2
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In practice, each zi contribution is usually given the same 
weight. We can assume that each of the zi random 
variables is statistically independent of the others. The 
PDF for u is therefore given by
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where (N) is the Gamma function for N. It is not the 
purpose of the paper to discuss the multiple alternative 
strategies for GPS receiver processing (for example to 
improve sensitivity). The paper does, nevertheless, use a 
reasonable methodology for a suitable processing model.  
The results are therefore indicative of the performance 
which can be attained in general.

A false signal detection (false alarm) occurs when the test 
statistic, u, exceeds a threshold value, t. The probability, 
P(u  t), of this event is:

t
t

PduuPtuP 

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There is a closed form infinite series expression for Pt

(see for example in ref. [9]) but this does not assist the 
process of determining the values of t for a required value 
of Pf. Equation (6) establishes the probability with which 
the threshold is exceeded in any searched cell.

In a typical search arrangement, a number, k, of cells will 
be searched. The probability that the threshold has been 
reached or exceeded in one or more cells, corresponding 
to one or more false detections, is therefore given by the 
Binomial distribution:

k
tf PP )1(1  . (7)



In the case where Pt is much less than 1 (as is the usual 
case), equation (7) can be approximated by using just the 
first two terms of the binomial expansion, giving

tf kPP  (8)

Plots of Pt vs t are shown in Figure 1 for various values of 
N.  
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Figure 1: the probability, Pt, of the noise crossing a 
threshold, t (in units of  2), in a single cell for various 
accumulations, N, of coherent integrations of 20 ms.

(In Figure 1, N has been selected as a power of 2 since 
the performance changes for smaller increments are not 
significant.)

The curves in Figure 1 show how a higher threshold, t, 
can be used for a given false alarm probability, Pf. For 
example, FTA with an accuracy of 2 s provides for a 
search window which is about 500 times narrower than 
one which encompasses the entire code-phase space. If 
we select, say, a probability of false-alarm of 102, then 
the curve for N = 1 in Figure 1 implies that a threshold 
value of about 10 2 is required with FTA (i.e. for k = 4 in 
Equation 7). The corresponding Pf without FTA (k = 500) 
is 5.106, implying that the threshold value must be set to 
about 25  2. The corresponding thresholds in the case of 
N = 64 are about 175 and 210  2 respectively. In each 
case, of course, the lower threshold implies a higher 
probability of detection of a signal. If the deflection in a 
channel is simply proportional to the signal power, s (in 
units of  2), then the examples just given for N = 1 and N
= 64 imply increased probabilities of detection of about 
25/10 (about 4 dB) and 210/175 (about 0.8 dB) 
respectively. However, more precise calculations are 
required (especially for N > 1) as follows.

PROBABILITY OF DETECTION

When a signal is present, the signal energy is split 
between the I and Q channels of the code-phase aligned 
correlator, the split depending upon the phase of the 
carrier replica with respect to the signal. The frequency 

difference () between replica and received signal may 
be non-zero, providing it satisfies the condition that the 
phase-change over the coherent integration period is 
small, i.e.  T << /2.

The maximum likelihood (ML) detection of the signal 
requires the formation of a test statistic z = ( I 2 + Q 2 ), 
whereby the signal energy is concentrated in the 
measurement z. After the ith period of coherent 
integration, each of the correlator outputs, (xi, yi), is 
assumed to hold the same signal energy. We then apply 
the same non-coherent accumulation process as we 
applied above to the noise-only case. The PDF of the 
output is an independent, jointly-normal distribution with 
a non-zero mean, i. As before, we add together N values 
of zi to form the accumulated output. This has a chi-
squared distribution which is non-central with 2N degrees 
of freedom. There is a unique rotation on the variables in 
2N-space which aligns the vector to the distribution mean 
with just one of the co-ordinate axes:
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The mean, , along this chosen axis (say the 2N th axis) is 
then given by
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where each i is the mean of each zi. This is precisely the 
process of measuring the accumulated energy from each 
coherent integration interval, weighting in accordance 
with the associated noise energy, and forming the 
incoherent sum. This is the processing required by the 
ML optimum processor. After some manipulation (see 
ref. [8] page 238), we obtain the PDF, P(us), for u 
(equation (4)) given a signal level s (in units of  2):
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The probability of detection for this known signal is the 
cumulative distribution of P(u|s) from a threshold, t (just 
as in equation (6)). The value of t is chosen to provide the 
required Pf:

dusuPP
t

d 
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It is assumed in this analysis that the signal is only present 
in one known cell (a specific code alignment). Examples 
of curves of Pd versus signal-to-noise ratio are given in 
Figure 2. These and are known as Receiver Operating 



Characteristics (ROC) curves. Figure 2 is for an 
illustrative single coherent integration of 20 ms and no in-
coherent integration (i.e. N = 1).  
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Figure 2: the probability of detection, Pd, plotted against 
the signal-to-noise ratio (s/ 2) for various probabilities of 

false alarm, Pf, from 102 to 106 in steps of a factor of 
0.316, for a single 20-ms integration (N = 1). 

From Figure 2, it is now possible to estimate more 
accurately the performance gain which FTA affords 
because of the reduction in code-phase search range. As 
before, we assume that the code search without FTA has 
to cover the entire code phase space in ½ chip increments 
(k = 2046 cells), and that with FTA only k = 4 cells (2 
chips) have to be searched. This is a reduction of a factor 
of about 500 in k, so that for the same overall false alarm 
probability, Pf, the threshold, t, can be lowered, thereby 
improving the probability of detection, Pd. Returning 
again to our previous example for N = 1, an overall Pf of 
102 implies a signal-to-noise ratio of about 10.3 dB with 
FTA (k = 4) for a probability of detection, Pd, of 0.5 
(Figure 2). Without FTA, the corresponding Pf must be 
5.106, implying a signal-to-noise ratio of about 13.6 dB. 
Hence the improvement in sensitivity brought about by 
FTA is about 3.3 dB, consistent with out previous 
estimate of 4 dB. The corresponding figures for the case 
where N = 64 (from Figure 3) are –1.2 and 1.2 dB, 
implying an improvement in sensitivity brought about by 
FTA of about 2.4 dB, considerably more than our 
previous estimate of 0.8 dB. 

In order to integrate coherently for this period, it is 
normally required to have the integration interval aligned 
with the satellite data stream at reception. Fine time 
aiding can enable this. Without FTA, an appropriate 
receiver search strategy is to form coherent integrations 
over 10 ms (some other intervals give slightly better 
results) and form the incoherent sum of 2 such results 
(covering an interval of 20 ms for comparison purposes).  
This technique results in a loss of signal-to-noise ratio 
after processing. To determine the size of this effect, we 

consider each of the 10 ms coherent integrations to have a 
loss of signal-to-noise ratio of 3 dB in comparison with a  
20-ms coherent integration. Of the 10 ms integrations, on 
average three quarters of them do not contain a data bit 
transition whilst one quarter do. Of these that do contain 
data bit transitions, the worst case effective signal is zero 
(if the data bit transition is in the centre of the integration 
interval).

The incoherent addition of the two 10 ms coherent 
integrations recovers some of the lost signal power, but 
there is still a residual loss of approximately 2.4 dB. This 
is made up partly of the loss in signal energy (in the 
interval containing the data-bit transition) and partly in 
the change from a single 20-ms coherent integration to 
having two 10-ms coherent integrations being added 
together incoherently.

The foregoing illustrates that the use of FTA assists in 
extending the period of coherent integration, and also in 
reducing the search code space thereby allowing reduced 
detection thresholds. Smaller signal powers then provide 
the same probability of detection. The overall 
improvement in detection sensitivity from these two 
factors is about 6.4 dB for the case where N = 1 and about 
5.1 dB for the case where N = 64.

INCOHERENT INTEGRATION OPPORTUNITIES

A second benefit may be taken from FTA when 
considering a GPS receiver fixed in complexity (i.e. 
having a defined number of complex correlators) and with 
a fixed observation interval. This is the basis for making 
a fair comparison between the performance of a receiver 
with and without FTA. The concept involved is that the 
channel slots released by the limited code search space 
can be used to increase the period of signal accumulation 
prior to detection. This does not apply to a receiver 
having an arbitrarily large number of correlators so that 
any task can have any number of correlators assigned to 
it. However, such a receiver is expensive. For the sake of 
comparison, we will consider the simplest case in which 
the receiver has just two complex correlators per satellite 
channel. Without FTA, these two correlators must be 
assigned to search over 500 code-phase offsets serially. 
Only one five hundredth of the time available can then be 
spent in an integration at each offset. With FTA, the two 
correlators can be positioned at the correct code-phase 
offset, and can spend all the time integrating the signal at 
that position, achieving a higher sensitivity.

As an illustration of this effect, we consider the 
cumulative probability distribution for the probability of 
detection from equation (11) above with N = 64. This 
corresponds to an observation interval of 1.28 s. The 
ROC curves corresponding to this number of incoherent 
integrations are shown in Figure 3.
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Figure 3: the probability of detection, Pd, plotted against 
the signal-to-noise ratio (s/ 2) for various probabilities of 

false alarm, Pf, from 102 to 106 in steps of a factor of 
0.316, for a 64 incoherent additions of 20-ms coherent 
integrations (N = 64). (Note that the curve for 3.105 is 

missing from the plot.)

As can be seen from Figure 3, at an overall Pf of 
approximately 102 (over 4 cells), the input signal to noise 
ratio for Pd = 0.5 is approximately –1.2 dB whereas the 
same result in Figure 2 is +10.2 dB. This is a performance 
improvement of 11.4 dB, and it corresponds to an 
increase in the total time of integration of a factor of 64. 
However, we still have a further factor of about 8 in time 
to devote to the integration with FTA since no serial 
searching over different code-phase offsets is required. 
Since we have not computed the curves beyond N = 64, 
we must extrapolate as follows.

The rate of input signal to noise ratio depression over the 
64 incoherent integrations is about 1.9 dB per doubling in 
N, the number of incoherent integrations. Using this 
figure to extrapolate to N = 512 leads to a further 
performance enhancement of approximately 3  1.9 = 5.7 
dB. The total improvement with FTA is then 11.4 + 5.7 = 
17.1 dB. This increase in sensitivity is in addition to 3.3 
dB from the reduction in search space and 2.4 dB from 
data bit transition synchronisation – an overall gain of 
nearly 23 dB.

The above figures suggest that a signal acquisition 
threshold of –192 dBW can be achieved in practice, a 
figure below most manufacturers claims. This figure is 
derived using a standard GPS receiver model with signal 
threshold at –169 dBW and using the additional gain of 
approximately 23 dB in 10 s of observing time calculated 
above to depress the threshold to –192 dBW. These gains 
rely on assumptions concerning the signal model, in 
which it has been assumed that the signal has constant 
magnitude over the period of integration. In practice, 
there will be few situations in which the signal level is not 
random. Signal propagation in low signal level cases is 

almost always dominated by multi-path. This gives rise 
to large signal level variations, with a Rayleigh magnitude 
distribution, and a coherence time dependent upon the 
receiver motion dynamics (propagation channel delay 
spread). In most cases, the coherence time will be much 
less than the integration time used in the above example.  
Nevertheless, the proposed calculation methodology will 
provide a near optimum use of the available signal 
energy.

FINE TIME AIDING TRADE-OFF

The previous calculations imply that a ‘performance 
benefit’ of about 23 dB is available with FTA for trading 
off between complexity of design (and hence cost), time 
to signal acquisition, and sensitivity. This is illustrated in 
the somewhat naïve but illustrative Table 2 below where 
we have made the assumption that the cost of the GPS 
design is just proportional to the number of correlators 
such that the 2048 correlator design costs $4 for the 
correlators plus $1 for the silicon support, plus $1 for the 
front-end, making a total of $6. The 2 correlator design 
costs just $1 as it has been assumed that the base-band 
processing has been implemented in software. The figures 
correspond to a total time available of 10.24 s.

correlators cost/$ Sensitivity/dBW
with
FTA

no 
FTA

2 (s/w) 1.0 192 169
32 (h/w) 2.0 192 174

256 (h/w) 2.5 192 180
2048 (h/w) 6.0 192 186

Table 2, illustrating how the performance benefits of FTA 
may be traded off between the complexity of the GPS 
receiver implementation and sensitivity which may be 

achieved with and without FTA

CONCLUSIONS

 The availability of FTA accurate to 2 s brings with 
it a performance benefit equivalent to about 23 dB in 
sensitivity. This may be traded, when the receiver 
design is frozen, between the complexity (number of 
correlators), the sensitivity, and the time to signal 
acquisition.

 Even for designs with 2048 correlators per satellite 
channel, FTA still brings a sensitivity increase of 
about 6 dB.

 The simplest design, having just 2 complex 
correlators per channel and therefore one which may 
be implemented in software, can achieve a sensitivity 
of 192 dBW with FTA in about 10 s.
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